
STAT 1
ID: 841-BSI | Version: 2 | Date: 5/16/08 2:39:36 PM

STAT
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-17

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 8040 bytes

Attack Category • Path spoofing or confusion problem

Vulnerability Category • Indeterminate File/Path

• TOCTOU - Time of Check, Time of Use

Software Context • File Management

Location

Description The stat() function obtains information about the
file pointed to by path. Read, write or execute
permission of the named file is not required, but all
directories listed in the path name leading to the file
must be searchable.

Lstat() is like stat() except in the case where the
named file is a symbolic link, in which case lstat()
returns information about the link, while stat()
returns information about the file the link references.

fstat() obtains the same information about an open
file known by the file descriptor fd.

stat() (in combination with other functions that
manipulate the file being queried; e.g., mkdir) is
vulnerable to TOCTOU attacks.

A call to stat() should be flagged if the first argument
(the directory name) is used later in a use-category
call.

APIs Function Name Comments

_stat check; win32

_tstat check; win32

_wstat check; win32

lstat check

stat check

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

STAT 2
ID: 841-BSI | Version: 2 | Date: 5/16/08 2:39:36 PM

followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to
intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

The stat() call is a check-category call, which when
followed by a use-category call can be indicative of a
TOCTOU vulnerability.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Generally
applicable to all
uses of stat.

Consider using
a safer approach
to using stat
such as that
outlined below
for opening and
creating files
as outlined in
Building Secure
Software
(referenced
below), page
220.

1) Perform an
lstat() of the file
before opening
it, saving the
stat structure.
2) Perform
Open(), passing
the O_CREAT
an O_EXCL
flags which will
cause the open
to fail if the
file cannot be
created.
3) Perform an
fstat() on the
file descriptor
returned by
the open() call,
saving the stat
structure.
4) Compare
three fields in
teh two stat
structures to
be sure they

Effective

STAT 3
ID: 841-BSI | Version: 2 | Date: 5/16/08 2:39:36 PM

are equivalent:
st_mode,
st_info &
st_dev. If these
comparisons
are successful,
then we know
the lstat() call
happened on
the file we
ultimately
opened.
Moreover, we
know that we
did not follow
a symbolic
link (which is
why we used
lstat() instead of
stat()).

(This solution
comes from
the book
Building Secure
Software
referenced
below)

Always verify
that the stat
function
successfully
accessed the file
and loaded the
description in
the struct.

Generally
applicable.

The most basic
advice for
TOCTOU
vulnerabilities
is to not
perform a check
before the use.
This does not
resolve the
underlying
issue of the
execution of
a function on
a resource
whose state and
identity cannot
be assured, but

Does not
resolve the
underlying
vulnerability
but limits the
false sense of
security given
by the check.

STAT 4
ID: 841-BSI | Version: 2 | Date: 5/16/08 2:39:36 PM

it does help
to limit the
false sense of
security given
by the check.

Generally
applicable.

Limit the
interleaving
of operations
on files from
multiple
processes.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applicable.

Limit the spread
of time (cycles)
between the
check and use
of a resource.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Signature Details int stat(const char *path, struct stat *sb);

int lstat(const char *path, struct stat *sb);

int fstat(int fd, struct stat *sb);

Examples of Incorrect Code char filename="theFile.txt";
struct stat statBuffer;
stat(fileName,&statBuffer);

In this case, the information
concerning the file will be placed
in statBuffer. If there are other
functions being called, it is
possible that they may attempt
to access the file at the same
time. Also, if there is a command
immediately after that assumes
successful filling of the buffer,
there can be a problem.

#include <sys/types.h>
#include <sys/stat.h>

int check_status;
int use_status;
struct stat statbuf;
...

check_status=stat("tobecreateddir",
&statbuf);

...
<long enough intervening code>

STAT 5
ID: 841-BSI | Version: 2 | Date: 5/16/08 2:39:36 PM

use_status=mkdir("tobecreateddir",..);

Examples of Corrected Code One solution is to eliminate the
pre-creation test and instead use
a post-creation status check.

#include <sys/types.h>
#include <sys/stat.h>

int status;
...
status = mkdir("/home/cnd/mod1",
S_IRWXU | S_IRWXG | S_IROTH |
S_IXOTH);
...

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, pg.
220.

• UNIX man page for stat()

• Microsoft Developer Network Library (MSDN)

Recommended Resource

Discriminant Set Operating Systems • Windows

• UNIX

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

